4.8 Article

Switching Individual Quantum Dot Emission through Electrically Controlling Resonant Energy Transfer to Graphene

Journal

NANO LETTERS
Volume 14, Issue 12, Pages 7115-7119

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl503587z

Keywords

Resonant energy transfer; graphene; colloidal quantum dots; FRET; nanophotonic switch

Funding

  1. U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Scientific User Facilities Division [DE-AC02-05CH11231]
  2. Laboratory Directed Research and Development (LDRD) from Berkeley Lab by Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division (NSRCs) Early Career Award

Ask authors/readers for more resources

Electrically controlling resonant energy transfer of optical emitters provides a novel mechanism to switch nanoscale light sources on and off individually for optoelectronic applications. Graphenes optical transitions are tunable through electrostatic gating over a broad wavelength spectrum, making it possible to modulate energy transfer from a variety of nanoemitters to graphene at room temperature. We demonstrate photoluminescence switching of individual colloidal quantum dots by electrically tuning their energy transfer to graphene. The gate dependence of energy transfer modulation confirms that the transition occurs when the Fermi level is shifted over half the emitters excitation energy. The modulation magnitude decreases rapidly with increasing emittergraphene distance (d), following the 1/d4 rate trend unique to the energy transfer process to two-dimensional materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available