4.8 Article

Enhancing Nanoparticle Electrodynamics with Gold Nanoplate Mirrors

Journal

NANO LETTERS
Volume 14, Issue 5, Pages 2436-2442

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl500107w

Keywords

Optical tweezers; optical manipulation; plasmonics; nanostructures

Funding

  1. National Science Foundation [CHE-1059057]

Ask authors/readers for more resources

Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More importantly, enhanced optical trapping and optical binding of Ag nanoparticles are demonstrated in interferometric optical traps created from a single laser beam and its reflection from individual Au nanoplates. The enhancement of the interparticle force constant is approximate to 20-fold more than expected from the increased intensity due to standing wave interference. We show that the additional stability for optical binding arises from the restricted axial thermal motion of the nanoparticles that couples to and reduces the fluctuations in the lateral plane. This new mechanism greatly advances the photonic synthesis of ultrastable nanoparticle arrays and investigation of their properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available