4.8 Article

Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas

Journal

NANO LETTERS
Volume 13, Issue 3, Pages 1257-1264

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl3047943

Keywords

Reconfigurable antennas; active plasmonics; graphene; nanocircuit loading; antenna array; optical modulator; midinfrared

Funding

  1. NSF [ECCS-1230477]

Ask authors/readers for more resources

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graphene, which has gate-voltage dependent optical properties, is emerging as a possible platform for electrically controlled plasmonic devices. In this paper, we demonstrate in situ control of antennas using graphene as an electrically tunable load in the nanoscale antenna gap. In our experiments, we demonstrate electrical tuning of graphene-loaded antennas over a broad wavelength range of 650 nm (similar to 140 cm(-1), similar to 10% of the resonance frequency) in the mid infrared (MIR) region. We propose an equivalent circuit model to quantitatively analyze the tuning behavior of graphene-loaded antenna pairs and derive an analytical expression for the tuning range of resonant wavelength. In a separate experiment, we used doubly resonant antenna arrays to achieve MIR optical intensity modulation with maximum modulation depth of more than 30% and bandwidth of 600 nm (similar to 100 cm(-1), 8% of the resonance frequency). This study shows that combining graphene with metallic nanostructures provides a route to electrically tunable optical and optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available