4.8 Article

Manipulation and Confinement of Single Particles Using Fluid Flow

Journal

NANO LETTERS
Volume 13, Issue 6, Pages 2357-2364

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl4008437

Keywords

Micro- and nanomanipulation; tweezers; trapping; hydrodynamic trap; microfluidics

Funding

  1. Packard Fellowship from the David and Lucile Packard Foundation
  2. NIH Pathway to Independence (PI) Award [4R00HG004183-03]

Ask authors/readers for more resources

High precision control of micro- and nanoscale objects in aqueous media is an essential technology for nanoscience and engineering. Existing methods for particle trapping primarily depend on optical, magnetic, electrokinetic, and acoustic fields. In this work, we report a new hydrodynamic flow based approach that allows for fine-scale manipulation and positioning of single micro- and nanoscale particles using automated fluid flow. As a proof-of-concept, we demonstrate trapping and two-dimensional (2D) manipulation of 500 nm and 2.2 mu m diameter particles with a positioning precision as small as 180 nm during confinement. By adjusting a single flow parameter, we further show that the shape of the effective trap potential can be efficiently controlled. Finally, we demonstrate two distinct features of the flow-based trapping method, including isolation of a single particle from a crowded particle solution and active control over the surrounding medium of a trapped object. The 2D flow-based trapping method described here further expands the micro/nanomanipulation toolbox for small particles and holds strong promise for applications in biology, chemistry, and materials research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available