4.8 Article

A Nanomechanical Fredkin Gate

Journal

NANO LETTERS
Volume 14, Issue 1, Pages 89-93

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl403268b

Keywords

Nanoelectromechanical systems; reversible computation; logic gate; Fredkin gate; nanomechanical computing

Funding

  1. NSF

Ask authors/readers for more resources

Irreversible logic operations inevitably discard information, setting fundamental limitations on the flexibility and the efficiency of modern computation. To circumvent the limit imposed by the von Neumann-Landauer (VNL) principle, an important objective is the development of reversible logic gates, as proposed by Fredkin, Toffoli, Wilczek, Feynman, and others. Here, we present a novel nanomechanical logic architecture for implementing a Fredkin gate, a universal logic gate from which any reversible computation can be built. In addition to verifying the truth table, we demonstrate operation of the device as an AND, OR, NOT, and FANOUT gate. Excluding losses due to resonator dissipation and transduction, which will require significant improvement in order to minimize the overall energy cost, our device requires an energy of order 10(4) kT per logic operation, similar in magnitude to state-of-the-art transistor-based technologies. Ultimately, reversible nanomechanical logic gates could play a crucial role in developing highly efficient reversible computers, with implications for efficient error correction and quantum computing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available