4.8 Article

How Graphene Slides: Measurement and Theory of Strain-Dependent Frictional Forces between Graphene and SiO2

Journal

NANO LETTERS
Volume 13, Issue 6, Pages 2605-2610

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl4007112

Keywords

Graphene; strain; friction; Raman spectroscopy; bilayer graphene; tribology

Funding

  1. Advanced Energy Consortium
  2. Mechanical Engineering department at Boston University
  3. NSF [CMMI-1036460]

Ask authors/readers for more resources

Strain, bending rigidity, and adhesion are interwoven in determining how graphene responds when pulled across a substrate. Using Raman spectroscopy of circular, graphene-sealed microchambers under variable external pressure, we demonstrate that graphene is not firmly anchored to the substrate when pulled. Instead, as the suspended graphene is pushed into the chamber under pressure, the supported graphene outside the microchamber is stretched and slides, pulling in an annulus. Analyzing Raman G band line scans with a continuum model extended to include sliding, we extract the pressure dependent sliding friction between the SiO2 substrate and mono-, bi-, and trilayer graphene. The sliding friction for trilayer graphene is directly ' proportional to the applied load, but the friction for naonolayer and bilayer graphene is inversely proportional to the strain in the graphene, which is in violation of Amontons' law. We attribute this behavior to the high surface conformation enabled by the low bending rigidity and strong adhesion of few layer graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available