4.8 Article

Controlled Sn-Doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion

Journal

NANO LETTERS
Volume 12, Issue 3, Pages 1503-1508

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl2042968

Keywords

Photoelectrochemical; water splitting; TiO2; Sn doping; photocurrent; photoconversion

Funding

  1. National Science Foundation of China [21071033]
  2. Program for New Century Excellent Talents in University [NCET-10-0357]
  3. Shanghai Pujiang Program [10PJ1401000]
  4. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
  5. Fudan University

Ask authors/readers for more resources

We demonstrate for the first time the controlled Sn-doping in TiO2 nanowire (NW) arrays for photoelectrochemical (PEC) water splitting. Because of the low lattice mismatch between SnO2 and TiO2, Sn dopants are incorporated into TiO2 NWs by a one-pot hydrothermal synthesis with different ratios of SnCl4 and tetrabutyl titanate, and a high acidity of the reactant solution is critical to control the SnCl, hydrolysis rate. The obtained Sn-doped TiO2 (Sn/TiO2) NWs are single crystalline with a rutile structure, and the incorporation of Sn in TiO2 NWs is well controlled at a low level, that is, 1-2% of Sn/Ti ratio, to avoid phase separation or interface scattering. PEC measurement on Sn/TiO2 NW photoanodes with different Sn doping ratios shows that the photocurrent increases first with increased Sn doping level to >2.0 mA/cm(2) at 0 V vs Ag/AgCl under 100 mW/cm(2) simulated sunlight illumination up to similar to 100% enhancement compared to our best pristine TiO2 NW photoanodes and then decreases at higher Sn doping levels. Subsequent annealing of Sn/TiO2 NWs in H-2 further improves their photoactivity with an optimized photoconversion efficiency of similar to 1.2%. The incident-photon-to-current conversion efficiency shows that the photocurrent increase is mainly ascribed to the enhancement of photoactivity in the UV region, and the electrochemical impedance measurement reveals that the density of n-type charge carriers can be significantly increased by the Sn doping. These Sn/TiO2 NW photoanodes are highly stable in PEC conversion and thus can serve as a potential candidate for pure TiO2 materials in a variety of solar energy driven applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available