4.8 Article

Large Apparent Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction

Journal

NANO LETTERS
Volume 12, Issue 8, Pages 4037-4044

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl301412b

Keywords

Nanofluidics; nanopore; ion transport; surface conduction; entrance effects

Funding

  1. ERC, AG-project Micromega

Ask authors/readers for more resources

Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available