4.8 Article

Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles

Journal

NANO LETTERS
Volume 13, Issue 1, Pages 253-258

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl3040042

Keywords

Two-dimensional; transition metal disulfides; dislocation; grain boundary; first principles theory

Funding

  1. U.S. Army Research Office MURI [W911NF-11-1-0362]
  2. National Science Foundation [CMMI 0708096, NIRT]
  3. NSF [OCI-0959097]

Ask authors/readers for more resources

Guided by the principles of dislocation theory, we use the first-principles calculations to determine the structure and properties of dislocations and grain boundaries (GB) in single-layer transition metal disulfides MS2 (M = Mo or W). In sharp contrast to other two-dimensional materials (truly planar graphene and h-BN), here the edge dislocations extend in third dimension, forming concave dreidel-shaped polyhedra. They include different number of homoelemental bonds and, by reacting with vacancies, interstitials, and atom substitutions, yield families of the derivative cores for each Burgers vector. The overall structures of GB are controlled by both local-chemical and far-field mechanical energies and display different combinations of dislocation cores. Further, we find two distinct electronic behaviors of GB. Typically, their localized deep-level states act as sinks for carriers but at large 60 degrees-tilt the GB become metallic. The analysis shows how the versatile GB in MS2 (if carefully engineered) should enable new developments for electronic and opto-electronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available