4.8 Article

Electromagnetic Field Enhancement and Spectrum Shaping through Plasmonically Integrated Optical Vortices

Journal

NANO LETTERS
Volume 12, Issue 1, Pages 219-227

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl203365y

Keywords

Nanoplasmonics; nano-optics; phase singularities; optical vortices; vortex nanogear transmissions; surface enhanced Raman spectroscopy

Funding

  1. National Institutes of Health [5R01CA138509-03]
  2. National Science Foundation [CBET-0853798, CBET-0953121]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [0953121, 0853798] Funding Source: National Science Foundation

Ask authors/readers for more resources

We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices pinned to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available