4.8 Article

Mechanisms for Oxidative Unzipping and Cutting of Graphene

Journal

NANO LETTERS
Volume 12, Issue 1, Pages 17-21

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl202656c

Keywords

Graphene; DFT; graphene oxide; defects

Funding

  1. Regione FVG

Ask authors/readers for more resources

We identify mechanisms and surface precursors for the nucleation and growth of extended defects on oxidized graphene. Density functional theory calculations show that the formation of surface structures capable to initiate the unzipping and cracking of the oxidized C network is strongly influenced by the constraint of the graphitic lattice on the surface functional groups. Accounting for this effect on the preferential spatial patterning of O adsorbates allows us to revise and extend the current models of graphene oxidative unzipping and cutting. We find that these processes are rate limited by O diffusion and driven by the local strain induced by the O adspecies. Adsorbate mobility is ultimately recognized as a key factor to control and to prevent the C-network breakdown during thermal processing of oxidized graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available