4.8 Article

Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles

Journal

NANO LETTERS
Volume 10, Issue 2, Pages 373-379

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl903271d

Keywords

Surface phonon resonance; radiative sky cooling; SiC nanoparticles; SiO2 nanoparticles; spectral selective emittance

Funding

  1. Australian Research Council Discovery [ARCDP0987354]

Ask authors/readers for more resources

Nanoparticles that have narrow absorption bands that lie entirely within the atmosphere's transparent window from 7.9 to 13 mu m can be used to radiatively cool to temperatures that are well below ambient. Heating from incoming atmospheric radiation in the remainder of the Planck radiation spectrum, where the atmosphere is nearly black, is reduced if the particles are dopants in infrared transmitting polymers, or in transmitting coatings on low emittance substrates. Crystalline SiC nanoparticles stand out with a surface phonon resonance from 10.5 to 13 mu m clear of the atmospheric ozone band. Resonant SiO2 nanoparticles are complementary, absorbing from 8 to 10 mu m, which includes atmospheric ozone emissions. Their spectral location has made SiC nanoparticles in space dust a feature in ground-based IR astronomy. Optical properties are presented and subambient cooling performance analyzed for doped polyethylene on aluminum. A mixture of SiC and SiO2 nanoparticles yields high performance cooling at low cost within a practical cooling rig.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available