4.8 Article

Raman Scattering at Pure Graphene Zigzag Edges

Journal

NANO LETTERS
Volume 10, Issue 11, Pages 4544-4548

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl102526s

Keywords

Graphene; zigzag edges; Raman spectroscopy; anisotropic etching

Funding

  1. OTKA-NKTH [67793]

Ask authors/readers for more resources

Theory has predicted rich and very distinct physics for graphene devices with boundaries that follow either the armchair or the zigzag crystallographic directions. A prerequisite to disclose this physics in experiment is to be able to produce devices with boundaries of pure chirality. Exfoliated flakes frequently exhibit corners with an odd multiple of 30 degrees, which raised expectations that their boundaries follow pure zigzag and armchair directions. The predicted Raman behavior at such crystallographic edges however failed to confirm pure edge chirality. Here, we perform confocal Raman spectroscopy on hexagonal holes obtained after the anisotropic etching of prepatterned pits using carbothermal decomposition of SiO2. The boundaries of the hexagonal holes are aligned along the zigzag crystallographic direction and leave hardly any signature in the Raman map indicating unprecedented purity of the edge chirality. This work offers the first opportunity to experimentally confirm the validity of the Raman theory for graphene edges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available