4.8 Article

Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

Journal

NANO LETTERS
Volume 9, Issue 9, Pages 3370-3374

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl901670t

Keywords

-

Funding

  1. Global Climate and Energy
  2. Office of Naval Research and King Abdullah University of Science and Technology (KAUST) [KUS-11001-12]

Ask authors/readers for more resources

We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of similar to 2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of similar to 4 mAh/cm(2), which is comparable to commercial battery values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available