4.8 Article

Combining Pattern Instability and Shape-Memory Hysteresis for Phononic Switching

Journal

NANO LETTERS
Volume 9, Issue 5, Pages 2113-2119

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl9006112

Keywords

-

Funding

  1. Institute for Soldier Nanotechnologies of the U.S. Army Research Office [W91 1NF-07-D-0004]
  2. National Science Foundation [CMS-0556211, DMR-0804449]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [804449] Funding Source: National Science Foundation

Ask authors/readers for more resources

We report a fully reversible and robust shape-memory effect in a two-dimensional nanoscale periodic structure composed of three steps, the elastic instability governing the transformation, the plasticity that locks in the transformed pattern as a result of an increase in glass transition temperature (T-g), and the subsequent elastic recovery due to the vapor-induced decrease in T-g. Solvent swelling of a cross-linked epoxy/air cylinder structure induces an elastic instability that causes a reversible change in the shape of the void regions from circular to oval. The pattern symmetry changes from symmorphic p6mm to nonsymmorphic p2gg brought via the introduction of new glide symmetry elements and leads to a significant change in the phononic band structure, specifically in the opening of a new narrow-band gap due to anticrossing of bands, quite distinct from gaps originating from typical Bragg scattering. We also demonstrate that numerical simulations correctly capture the three steps of the shape-memory cycle observed experimentally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available