4.8 Article

The Ultimate Strength of Glass Silica Nanowires

Journal

NANO LETTERS
Volume 9, Issue 2, Pages 831-835

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl803581r

Keywords

-

Funding

  1. Royal Society (London)

Ask authors/readers for more resources

In the past decade nanowires have attracted an increase interest because of their extraordinary mechanical strength. In fact, material properties in the nanoregime are extremely different from those found in macroscopic samples: few crystalline materials have shown a tensile strength in excess of 10 GPa in the form of nanowires. Still the length of defect-free crystalline nanowires is limited to a few millimeters and the strength of long nanowires is compromised by defects. The strength of glass nanowires is less affected by single defects. In this paper we present the ultimate strength of glass silica nanowires manufactured by a top-down fabrication technique; this is the highest value reported for glass materials. The measured ultimate strength is in excess of 10 GPa and increases for decreasing nanowire diameters. Scanning electron micrographs of the broken fragments showed a fragile rupture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available