4.8 Article

Self-Assembly of Aptamer-Circular DNA Nanostructures for Controlled Biocatalysis

Journal

NANO LETTERS
Volume 9, Issue 12, Pages 4098-4102

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl902317p

Keywords

-

Funding

  1. Israel Science Foundation, Israel

Ask authors/readers for more resources

Two kinds of circular DNA components are generated by the hybridization of short nucleic acids with the 3' and 5' ends of single-stranded DNA chains. The circular DNA components include, each, complementary domains for the anticocaine aptamer subunits, and sequence-specific domains for the auxiliary hybridization of programmed nucleic acid-functionalized proteins. The circular DNA components are self-assembled, in the presence of cocaine, into DNA nanowires (micrometer-long nanowires exhibiting heights of ca. 1.6-3.0 nm). Nucleic acids functionalized with glucose oxidase (GOx) and horseradish peroxidase (HRP) are hybridized with the circular DNA components to yield nanostructures consisting of HRP and GOx on the DNA scaffold. A biocatalytic cascade, where the GOx-catalyzed oxidization of glucose by O-2 yields H2O2, and the resulting H2O2 oxidizes 2,2'-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS(2-)), in the presence of HRP, is activated by the system. The biocatalyzed oxidization of ABTS(2-) on the DNA scaffold is 6-fold enhanced as compared to a nonbridged homogeneous system of the two biocatalysts. The enhanced biocatalytic cascade on the DNA scaffold is attributed to high local concentrations of the reactive components in the vicinity of biocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available