4.8 Article

Atomistic design of thermoelectric properties of silicon nanowires

Ask authors/readers for more resources

We present predictions of the thermoelectric figure of merit (ZT) of Si nanowires with diameter up to 3 nrn, based upon the Boltzman transport equation and ab initio electronic structure calculations. We find that ZT depends significantly on the wire growth direction and surface reconstruction, and we discuss how these properties can be tuned to select silicon based nanostruCtUres with combined n-type and p-type optimal ZT. Our calculations show that only by reducing the ionic thermal conductivity by about 2 or 3 orders of magnitudes with respect to bulk values, one may attain ZT larger than 1, for 1 or 3 nm wires, respectively. We also find that ZT of p-doped wires is considerably smaller than that of their n-doped counterparts with the same size and geometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available