4.8 Article

Fabrication of conjugated polymer nanowires by edge lithography

Ask authors/readers for more resources

This paper describes the fabrication of conjugated polymer nanowires by a three stage process: (i) spin-coating a composite film comprising alternating layers of a conjugated polymer and a sacrificial material, (ii) embedding the film in an epoxy matrix and sectioning it with an ultramicrotome (nanoskiving), and (iii) etching the sacrificial material to reveal nanowires of the conjugated polymer. A free-standing, 100-layer film of two conjugated polymers was spin-coated from orthogonal solvents: poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) from chloroform and poly(benzimidazobenzophenanthroline ladder) (BBL) from methanesulfonic acid. After sectioning the multilayer film, dissolution of the BBL with methanesulfonic acid yielded uniaxially aligned MEH-PPV nanowires with rectangular cross sections, and etching MEH-PPV with an oxygen plasma yielded BBL nanowires. The conductivity of MEH-PPV nanowires changed rapidly and reversibly by >10(3) upon exposure to 12 vapor. The result suggests that this technique could be used to fabricate high-surface-area structures of conducting organic nanowires for possible applications in sensing and in other fields where a high surface area in a small volume is desirable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available