4.8 Article

Vacancy migrations in carbon nanotubes

Ask authors/readers for more resources

Activities of vacancy defects in carbon nanotubes have been directly monitored by in situ high-resolution transmission electron microscopy at elevated temperatures. Adatom-vacancy pair defects are first prolific due to the knock-on damage, and then the induced vacancies indeed grow up to 1-2 nm in the size by the following Joule heating. Surprisingly, these large vacancies, or holes, tend to migrate and coalesce with each other to form even larger ones. It suggests that the activation barrier has been substantially lowered due to the contributions of an electromigration and/or irradiation effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available