4.8 Article

Tailored Magnetic Nanoparticles for Direct and Sensitive Detection of Biomolecules in Biological Samples

Journal

NANO LETTERS
Volume 8, Issue 10, Pages 3423-3428

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl8022498

Keywords

-

Funding

  1. European Commission sixth Framework Program [BIODIAGNOSTICS NMP4-CT-2005017002]

Ask authors/readers for more resources

We developed nanoparticles with tailored magnetic properties for direct and sensitive detection of biomolecules in biological samples in a single step. Thermally blocked nanoparticles obtained by thermal hydrolysis, functionalized with specific ligands, are mixed with sample solutions, and the variation of the magnetic relaxation due to surface binding is used to detect the presence of biomolecules. The binding significantly increases the hydrodynamic volume of nanoparticles, thus changing their Brownian relaxation frequency which is measured by a specifically developed AC susceptometer, The system was tested for the presence of Brucelia antibodies, a dangerous pathogen causing brucellosis with severe effects both on humans and animals, in serum samples from infected cows and the surface of the nanoparticles was functionalized with lipopolysaccarides (LPS) from Brucella abortus. The hydrodynamic volume of LPS-functionalized particles increased by 25-35% as a result of the binding of the antibodies, measured by changes in the susceptibility in an alternating magnetic field. The method has shown high sensitivity, with detection limit of 0.05 mu g.mL(-1) of antibody in the biological samples without any pretreatment. This magnetic-based assay is very sensitive, cost-efficient, and versatile, giving a direct indication whether the animal is infected or not, making it suitable for point-of-care applications. The functionalization of tailored magnetic nanoparticles can be modified to suit numerous homogeneous assays for a wide range of applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available