4.8 Article

Distribution of active impurities in single silicon nanowires

Journal

NANO LETTERS
Volume 8, Issue 9, Pages 2620-2624

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl080265s

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

The distribution of electrically active B concentration in single SiNWs (nanowires) grown by a vapor-liquid-solid (VLS) process was studied by analyzing Fano resonance in Raman spectra. We found a gradient of active B concentration along the growth direction; the B concentration was the largest at the substrate side and the smallest at the catalyst side. The observed concentration gradient suggests the conformal growth of a high B concentration layer during a VLS process. To confirm this effect, we grew SiNWs with controlled impurity profiles, that is, p-type/intrinsic (p-i) and intrinsic/p-type (i-p) SiNWs, by controlling the supply of B source during SiNWs growth. We found that p-i SiNWs can be grown by just stopping the supply of B source in the middle of the growth, while i-p SiNWs were not realized; that is, the whole region of nominal i-p SiNWs was B-doped even if we started the supply of B source in the middle of the growth. These results confirm the above doping model. We also found that the distribution of active B concentration was significantly modified by high temperature annealing. By annealing at 1100 degrees C for 1 min, B concentration became almost uniform along 10 mu m long SiNWs irrespective of initial B profiles. This suggests very efficient diffusion of B atoms in a defective high B concentration surface layer of SiNWs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available