4.8 Article

Detection of Nanoscale Magnetic Activity Using a Single Carbon Nanotube

Journal

NANO LETTERS
Volume 8, Issue 12, Pages 4498-4505

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nl802456t

Keywords

-

Funding

  1. Interconnect Focus Center New York at RPI
  2. Interconnect Focus Center New York at RPI, one of the five Focus Center Research Programs
  3. Semiconductor Research Corporation
  4. Office of Research Development
  5. SIUC

Ask authors/readers for more resources

The ultimate conductometric sensor for ferromagnetic activity of nanoscale magnetic materials could be a single carbon nanotube. We show that the electrical conductance of an individual carbon nanotube is sensitive to magnetic transitions of nanoscale magnets embedded inside it. To establish this, multiwall carbon nanotubes were impregnated with cobalt nanoclusters. Temperature dependence of conductance (5 K < T < 300 K) of these nanotubes; shows the usual Luttinger-liquid power law behavior at higher temperatures and an onset of Coulomb blockade at lower temperatures. At the lowest temperature (T similar to 6 K), the differential conductance (dI/dV versus to develops aperiodic fluctuations under an external magnetic field B, the rms amplitude of which grows with the magnitude of the field itself. Low-temperature magnetoconductance, studied as function of temperature and bias, can be interpreted in terms of weak antilocalization effects due to the presence of the magnetized clusters. The temperature dependence of magnetoconductance further presents a peak-like feature and slow dynamics around T = 55 K, which depend on the magnitude and history of the applied B field. These observations indicate a sensitivity of electronic transport in the multiwall nanotubes to the dynamics of nanoscale magnets at low temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available