4.5 Article

Comparative study of mycorrhizal susceptibility and anatomy of four palm species

Journal

MYCORRHIZA
Volume 20, Issue 2, Pages 103-115

Publisher

SPRINGER
DOI: 10.1007/s00572-009-0266-x

Keywords

Intermediate arbuscular mycorrhizal anatomy; Brahea armata; Chamaerops humilis; Phoenix canariensis; Phoenix dactylifera

Funding

  1. Spanish Ministry of Education and Science [CGL2007-61175/BOS, 08812/PI/08]

Ask authors/readers for more resources

A morphological and anatomical study of the root systems of the palm species Brahea armata S. Watson, Chamaerops humilis L., Phoenix canariensis Chabaud and Phoenix dactylifera L. has been carried out to determine possible mycorrhizal colonization sites. Furthermore, the arbuscular mycorrhizal (AM) anatomical types formed by the four palm species in association with Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe have been examined. The presence of a continuous sclerenchymatic ring in the outer cortex and aerenchyma in the inner cortex that are anatomical indicators of mycorrhizal nonsusceptibility in all four palm species is observed. The root systems of B. armata and C. humilis present only one group of third-order roots, while the third-order roots of P. canariensis and P. dactylifera may be divided into five different groups: short thick roots, mycorrhizal thickened roots, fine short roots, fine long roots, and pneumatorhizas. Third-order and some second-order roots of B. armata and C. humilis are susceptible to colonization by AM fungi, while only the mycorrhizal thickened roots form mycorrhizas with arbuscules in the Phoenix species. The root system of the Phoenix species also presents AM colonization in fine roots with only intraradical hyphae and spores, but without arbuscules, and pseudomantles of spores anchored in the pneumatorings of the second-order roots, which are described for the first time. The mycorrhizas formed by the four palm species are of an intermediate type, between the Arum and the Paris types, and are characterized by intercalary arbusculate coils and not only by intracellular but also by intercellular fungal growth. Our study suggests that a different degree of adaptation may exist among palm mycorrhizas toward the slow growth of palms and low spore numbers in the soil where they grow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available