4.1 Article

Folate, genomic stability and colon cancer: The use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring

Publisher

ELSEVIER
DOI: 10.1016/j.mrgentox.2018.08.012

Keywords

Single cell gel electrophoresis; Comet assay; Folate; Genomic stability; Colon; Uracil; DNA methylation

Funding

  1. Tenovus Scotland
  2. Scottish Government Rural and Environmental Science and Analytical Sciences Division (RESAS)
  3. COST Action [CA15132]
  4. Conselleria de Cultura, Educacion e Ordenacion Universitaria, Xunta de Galicia [ED481B2016/103-0]

Ask authors/readers for more resources

Intake of folate (vitamin B-9) is strongly inversely linked with human cancer risk, particularly colon cancer. In general, people with the highest dietary intake of folate or with high blood folate levels are at a reduced risk (approx. 25%) of developing colon cancer. Folate acts in normal cellular metabolism to maintain genomic stability through the provision of nucleotides for DNA replication and DNA repair and by regulating DNA methylation and gene expression. Folate deficiency can accelerate carcinogenesis by inducing misincorporation of uracil into DNA, by increasing DNA strand breakage, by inhibiting DNA base excision repair capacity and by inducing DNA hypomethylation and consequently aberrant gene and protein expression. Conversely, increasing folate intake may improve genomic stability. This review describes key applications of single cell gel electrophoresis (the comet assay) in assessing genomic instability (misincorporated uracil, DNA single strand breakage and DNA repair capacity) in response to folate status (deficient or supplemented) in human cells in vitro, in rodent models and in human case-control and intervention studies. It highlights an adaptation of the SCGE comet assay for measuring genome-wide and gene specific DNA methylation in human cells and colon tissue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available