4.1 Article

Black soybean seed coat polyphenols prevent B(a)P-induced DNA damage through modulating drug-metabolizing enzymes in HepG2 cells and ICR mice

Publisher

ELSEVIER
DOI: 10.1016/j.mrgentox.2013.01.002

Keywords

Black soybean seed coat extract; Procyanidin; DNA damage; Cytochrome P4501A1 (CYP1A1); Glutathione S-transferase (GST)

Ask authors/readers for more resources

Black soybean seed coat is a rich source of polyphenols that have been reported to have various physiological functions. The present study investigated the potential protective effects of polyphenolic extracts from black soybean seed coat on DNA damage in human hepatoma HepG2 cells and ICR mice. The results from micronucleus (MN) assay revealed that black soybean seed coat extract (BE) at concentrations up to 25 mu g/mL was non-genotoxic. It is noteworthy that BE (at 4.85 mu g/mL) and its main components, procyanidins (PCs) and cyanidin 3-glucoside (C3G), at 10 mu M significantly reduced the genotoxic effect induced by benzo[a]pyrene [B(a)P]. To obtain insights into the underlying mechanism, we investigated BE and its main components on drug-metabolizing enzyme expression. The results of this study demonstrate that BE and its main components, PCs and C3G, down-regulated B(a)P-induced cytochrome P4501A1 (CYP1A1) expression by inhibiting the transformation of aryl hydrocarbon receptor. Moreover, they increased expression of detoxifying defense enzymes, glutathione S-transferases (GSTs) via increasing the binding of nuclear factor-erythroid-2-related factor 2 to antioxidant response elements. Collectively, we found that PCs and C3G, which are the main active compounds of BE, down-regulated CYP1A1 and upregulated GST expression to protect B(a)P-induced DNA damage in HepG2 cells and ICR mice effectively. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available