4.1 Article

Evidence of the in vitro genotoxicity of methyl-pyrazole pesticides in human cells

Publisher

ELSEVIER
DOI: 10.1016/j.mrgentox.2012.05.014

Keywords

Pyrazole; Pesticides; Genotoxicity; gamma-H2AX; Jurkat cells; SH-SY5Y cells

Funding

  1. ANSES PNREST program (PES-TIMPACT) [EST-010/2/085]
  2. French Agence Nationale pour la Recherche (ANR PERICLES) [2008-CESA 01601]

Ask authors/readers for more resources

Consumers are exposed daily to several pesticide residues in food, which can be of potential concern for human health. Based on a previous study dealing with exposure of the French population to pesticide residues via the food, we selected 14 pesticides frequently found in foodstuffs, on the basis of their persistence in the environment or their bioaccumulation in the food chain. In a first step, the objective of this study was to investigate if the 14 selected pesticides were potentially cytotoxic and genotoxic. For this purpose, we used a new and sensitive genotoxicity assay (the gamma H2AX test, involving phosphorylation of histone H2AX) with four human cell lines (ACHN, SH-SY5Y, LS-174T and HepG2), each originating from a potential target tissue of food contaminants (kidney, nervous system, colon, and liver, respectively). Tebufenpyrad was the only compound identified as genotoxic and the effect was only observed in the SH-SY5Y neuroblastoma cell-line. A time-course study showed that DNA damage appeared early after treatment (1 h), suggesting that oxidative stress could be responsible for the induction of gamma H2AX. In a second step, three other pesticides were studied, i.e. bixafen, fenpyroxi mate and tolfenpyrad, which - like tebufenpad - also had a methyl-pyrazole structure. All these compounds demonstrated genotoxic activity in SH-SY5Y cells at low concentration (nanomolar range). Complementary experiments demonstrated that the same compounds show genotoxicity in a human T-cell leukemia cell line (Jurkat). Moreover, we observed an increased production of reactive oxygen species in Jurkat cells in the presence of the four methyl-pyrazoles. These results demonstrate that tebufenpyrad, bixafen, fenpyroximat and tolfenpyrad induce DNA damage in human cell lines, very likely by a mode of action that involves oxidative stress. Nonetheless, additional in vivo data are required before a definitive conclusion can be drawn regarding hazard prediction to humans. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available