4.1 Article

Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines

Publisher

ELSEVIER
DOI: 10.1016/j.mrgentox.2009.05.016

Keywords

Stable DPPH radical; Eugenol; Borneol; HepG2 cells; Caco-2 cells; VH10 cells; Trypan-blue exclusion; Single-cell gel electrophoresis; Essential oils

Funding

  1. Science and Technology Assistance Agency [APVT-51-015404]
  2. VEGA [2/0072/09, 2/0050/09]

Ask authors/readers for more resources

Plant volatiles, which can get into the human organism in food, medicines, or cosmetic preparations, frequently manifest antibacterial, antifungal. antiviral and other effects. We studied anti-oxidative, cytotoxic, genotoxic and possible DNA-protective effects of eugenol and borneol. Anti-oxidative activities of aqueous and ethanolic solutions of these two volatile compounds of plants were determined by a spectrophotometric method by the use of the stable DPPH radical. Borneol did not show any anti-oxidative activity even at the highest concentrations soluble in water or ethanol (< 1000 mM), while eugenol did manifest anti-oxidative activity, and at Much lower concentrations (5-100 mu M). The cytotoxicity of eugenol and borneol as well as their DNA-damaging effects and their influence on sensitivity of cells against the DNA-damaging effects of H2O2 were investigated in three different cell lines, i.e. malignant HepG2 hepatoma cells, malignant Caco-2 colon cells, and nonmalignant human VH10 fibroblasts. The trypan-blue exclusion assay showed that in the three cell lines the cytotoxicity of eugenol was significantly higher than that of borneol. Single-cell gel electrophoresis revealed that borneol did not Cause any DNA strand-breaks at the concentrations studied, but showed that all concentrations of eugenol (<600 mu M) significantly increased the level of DNA breaks in human VH10 fibroblasts and to a lower degree in Caco-2 colon cells. The DNA-damaging effects of eugenol were not observed in metabolically active HepG2 hepatoma cells. Borneol and eugenol differed also with respect to their DNA-protective effects. While borneol protected HepG2 and, to a lesser extent, VH10 cells (but not Caco-2) against H2O2-induced DNA damage, eugenol either did not change the cellular sensitivity to H2O2 (HepG2 cells) or it even increased the sensitivity (Caco-2 and VH10 cells). These results do not indicate any correlation between the DNA-protective and the anti-oxidative capacities of eugenol and borneol. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available