4.1 Article

Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism

Publisher

ELSEVIER
DOI: 10.1016/j.mrfmmm.2009.09.011

Keywords

Organophosphorous pesticides; Benzo(a)pyrene; Co-genotoxicity; Micronucleus assay; Aldoketo reductase

Funding

  1. Slovenian Research Agency [JI-6712]

Ask authors/readers for more resources

organophosphorus compounds (OPs) are widely used as pesticides. They act primarily as neurotoxins, but there is increasing evidence for secondary mechanisms of their toxicity. We have shown that the model OPs, methyl parathion (PT) and methyl paraoxon (PO), are genotoxic. Benzo(a)pyrene (BaP) is a widespread environmental genotoxin found in cigarette smoke, polluted air and grilled food. As people are constantly exposed to low concentrations of BaP and also to OPs, the aim of this study was to determine possible synergistic effects of PT and PO on BaP-induced genotoxicity. In the bacterial reverse mutation assay, PT and PO increased the number of BaP-induced mutations. The comet assay with human hepatoma HepG2 cells showed that BaP-induced DNA strand breaks were increased by PT but slightly decreased by PO. Using the acellular comet assay with UVC-induced DNA strand breaks, we observed a decrease in DNA migration, indicating that OPs cause cross-linking, thus interfering with comet assay results. In HepG2 cells the two OPs induced micronuclei formation at very low doses (0.01 mu g/ml) and together with BaP, a more than additive increase of micronuclei was observed, confirming their co-genotoxic effect. We demonstrated for the first time that PT and PO modulate the metabolic activation of BaP. Addition of PT or PO increased aldo-keto reductase (AKR1C1/2) levels in the presence of BaP, while cytochrome 1A (CYP1A) mRNA expression and activity were decreased. Further, specific inhibition of CYP1A had no effect on BaP or OP + BaP-induced micronuclei, whereas inhibition of AKR1C dramatically decreased the number of micronuclei induced by BaP or OP + BaP. Based on these results we propose that co-genotoxicity results from OPs mediated modulation of BaP metabolism, favouring the induction of AKR1C enzymes known to catalyse the formation of DNA reactive BaP o-quinones and the production of reactive oxygen species. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available