4.1 Article

Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae

Publisher

ELSEVIER
DOI: 10.1016/j.mrfmmm.2007.08.009

Keywords

Saccharomoces cerevisiae; selenium compounds; sodium selenite; toxicity; mutagenicity; DNA double-strand breaks

Ask authors/readers for more resources

Selenium (Se) is an essential trace element for humans, animals and some bacteria which is important for many cellular processes. Se's bio-activity is mainly influenced by its chemical form and dose. The use of Se supplements in the human diet emphasizes the need to establish both the beneficial and detrimental doses of each Se compound. We have evaluated three different Se compounds, sodium selenite (SeL), selenomethionine (SeM) and Se-methylselenocysteine (SeMC), with respect to their potential DNA damaging effects. The budding yeast Saccharomyces cerevisiae was used as a model system to test the toxic and mutagenic effects as well as the DNA double-strand breakage potency of these Se compounds in both exponentially growing and stationary yeast cells. Only SeL manifested any significant toxic effects in the yeast which were more pronounced in the exponentially growing cells than in those cells in the stationary phase of growth. The toxic effects of SeL were however accompanied with the pro-mutagenic effects in the stationary cell phase of growth. The toxic and mutagenic effects of SeL are likely associated with the ability of this compound to generate DNA double-strand breaks (DSB). We also show that SeL significantly increased frame-shift mutations, especially 1-4 bp deletions, in the CAN1 mutational spectrum of the yeast genome when compared to untreated control. We propose that SeL is acting as an oxidizing agent in S. cerevisiae producing superoxide and oxidative damage to DNA accounting for the observed DSB and cell death. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available