4.4 Article

ROLE OF TRPM2 CATION CHANNELS IN DORSAL ROOT GANGLION OF RATS AFTER EXPERIMENTAL SPINAL CORD INJURY

Journal

MUSCLE & NERVE
Volume 48, Issue 6, Pages 945-950

Publisher

WILEY
DOI: 10.1002/mus.23844

Keywords

Ca2+ signaling; nimodipine; oxidative stress; peripheral pain; spinal injury; TRPM2 cation channels

Ask authors/readers for more resources

Introduction: We sought to determine the contribution of oxidative stress-dependent activation of TRPM2 and L-type voltage-gated Ca2+ channels (VGCC) in dorsal root ganglion (DRG) neurons of rats after spinal cord injury (SCI). Methods: The rats were divided into 4 groups: control; sham control; SCI; and SCI+nimodipine groups. The neurons of the SCI groups were also incubated with non-specific TRPM2 channel blockers, 2-aminoethoxydiphenylborate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA), before H2O2 stimulation. Results:The [Ca2+](i) concentrations were higher in the SCI group than in the control groups, although their concentrations were decreased by nimodipine and 2-APB. The H2O2-induced TRPM2 current densities in patch-clamp experiments were decreased by ACA and 2-APB incubation. In the nimodipine group, the TRPM2 channels of neurons were not activated by H2O2 or cumene hydroperoxide. Conclusions: Increased Ca2+ influx and currents in DRG neurons after spinal injury indicated TRPM2 and voltage-gated Ca2+ channel activation. Muscle Nerve48: 945-950, 2013

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available