4.4 Article

ATROGIN-1, MuRF1, AND FoXO, AS WELL AS PHOSPHORYLATED GSK-3β AND 4E-BP1 ARE REDUCED IN SKELETAL MUSCLE OF CHRONIC SPINAL CORD-INJURED PATIENTS

Journal

MUSCLE & NERVE
Volume 40, Issue 1, Pages 69-78

Publisher

WILEY
DOI: 10.1002/mus.21293

Keywords

Akt; atrogin-1; muscle atrophy; spinal cord injury; protein degradation; protein synthesis

Ask authors/readers for more resources

Chronic complete spinal cord injury (SCI) is associated with severe skeletal muscle atrophy as well several atrophy and physical-inactivity-related comorbidity factors such as diabetes, obesity, lipid disorders, and cardiovascular diseases. Intracellular mechanisms associated with chronic complete SCI-related muscle atrophy are not well understood, and thus their characterization may assist with developing strategies to reduce the risk of comorbidity factors. Therefore, the aim of this study was to determine whether there was an increase in catabolic signaling targets, such as atrogin-1, muscle ring finger-1 (MuRF1), forkhead transcription factor (FoXO), and myostatin, and decreases in anabolic signaling targets, such as insulin-like growth factor (IGF), v-akt murine thymoma viral oncogene (Akt), glycogen synthase kinase-beta (GSK-3 beta), mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and p70(s6kinase) in chronic complete SCI patients. In SCI patients, when compared with controls, there was a significant reduction in mRNA levels of atrogin-1 (59%; P < 0.05), MuRF1 (55%; P < 0.05), and myostatin (46%; P < 0.01), and in protein levels of FoXO1 (72%; P < 0.05), FoXO3a (60%; P < 0.05), and atrogin-1 (36%; P < 0.05). Decreases in the protein levels of IGF-1 (48%; P < 0.001) and phosphorylated GSK-3 beta (54%; P < 0.05), 4E-BP1 (48%; P < 0.05), and p70(s6kinase) (60%; P = 0.1) were also observed, the latter three in an Akt- and mTOR-independent manner. Reductions in atrogin-1, MuRF1, FoXO, and myostatin suggest the existence of an internal mechanism aimed at reducing further loss of muscle proteins during chronic SCI. The downregulation of signaling proteins that regulate anabolism, such as IGF, GSK-3 beta, and 4E-BP1, would reduce the ability to increase protein synthesis rates. Muscle Nerve 40: 69-78, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available