4.4 Article

Interstitial adenosine triphosphate modulates muscle afferent nerve-mediated pressor reflex

Journal

MUSCLE & NERVE
Volume 38, Issue 2, Pages 972-977

Publisher

WILEY
DOI: 10.1002/mus.21014

Keywords

autonomic reflex; muscle contraction; purinergic signaling

Funding

  1. NHLBI NIH HHS [R01 HL078866, R01 HL60800, R01 HL075533, R01 HL060800] Funding Source: Medline

Ask authors/readers for more resources

Previous work has shown that muscle contraction elevates interstitial adenosine triphosphate concentration ([ATP]i), which is likely due to the release of ATP from active skeletal muscle. ATP activation of purinergic receptors P2X on thin muscle afferent fibers further enhances cardiovascular responses to contraction. Thus, the purposes of this study were: (1) to examine the mechanisms by which ATP is released from muscle in response to mechanical stimulation; and (2) to study the effects of interstitial ATP concentrations on modulating pressor response to muscle contraction. Static contraction of the triceps surae muscle was evoked by electrical stimulation (at 5 Hz and 2.5 times motor threshold) of the tibial nerve in 9 anesthetized cats. Muscle interstitial ATP samples were collected from microdialysis probes inserted into the muscles. Dialysate ATP concentrations were determined using the luciferin erase assay. In a control experiment, contraction was induced after 0.5 ml of saline was injected into the arterial blood supply of the hindlimb muscles. This increased [ATP]i by 220% (P < 0.05 vs. baseline). After gadolinium (1 1 a blocker of mechanically sensitive channels, was injected into the muscles, contraction increased [ATP]i by 112% (P < 0.05 vs. control). In contrast, glibenclamide (an inhibitor of the ATP-binding cassette protein), monensin, and brefeldin A, which interfere with vesicular formation (or trafficking) and inhibit exocytosis, did not significantly affect ATP release by muscle contraction. In addition, a regression analysis showed that [ATP]i was linearly related to the pressor response to muscle contraction. The data suggest that ATP release from skeletal muscle is mediated via involvement of mechanosensitive channels. These findings further support a physiological role for release of ATP in modulating cardiovascular responses during static muscle contraction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available