4.6 Review

Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

Journal

SENSORS
Volume 15, Issue 10, Pages 26281-26314

Publisher

MDPI
DOI: 10.3390/s151026281

Keywords

FRET; fluorescence; biosensors; imaging

Funding

  1. Austrian Science Fund (FWF) [P 27842] Funding Source: researchfish
  2. Austrian Science Fund (FWF) [P27842] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

Fluorescence- or Forster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available