4.6 Article

Design and Fabrication of a Real-Time Measurement System for the Capsaicinoid Content of Korean Red Pepper (Capsicum annuum L.) Powder by Visible and Near-Infrared Spectroscopy

Journal

SENSORS
Volume 15, Issue 11, Pages 27420-27435

Publisher

MDPI
DOI: 10.3390/s151127420

Keywords

visible and near-infrared; spectroscopy; capsaicinoid content; red pepper powder; partial least square regression

Funding

  1. National Institute of Agricultural Science, Rural Development Administration, Republic of Korea [PJ01096901]

Ask authors/readers for more resources

This research aims to design and fabricate a system to measure the capsaicinoid content of red pepper powder in a non-destructive and rapid method using visible and near infrared spectroscopy (VNIR). The developed system scans a well-leveled powder surface continuously to minimize the influence of the placenta distribution, thus acquiring stable and representative reflectance spectra. The system incorporates flat belts driven by a sample input hopper and stepping motor, a powder surface leveler, charge-coupled device (CCD) image sensor-embedded VNIR spectrometer, fiber optic probe, and tungsten halogen lamp, and an automated reference measuring unit with a reference panel to measure the standard spectrum. The operation program includes device interface, standard reflectivity measurement, and a graphical user interface to measure the capsaicinoid content. A partial least square regression (PLSR) model was developed to predict the capsaicinoid content; 44 red pepper powder samples whose measured capsaicinoid content ranged 13.45-159.48 mg/100 g by per high-performance liquid chromatography (HPLC) and 1242 VNIR absorbance spectra acquired by the pungency measurement system were used. The determination coefficient of validation (R-V(2)) and standard error of prediction (SEP) for the model with the first-order derivative pretreatment method for Korean red pepper powder were 0.8484 and +/- 13.6388 mg/100 g, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available