4.4 Article

System reduction in multibody dynamics of wind turbines

Journal

MULTIBODY SYSTEM DYNAMICS
Volume 21, Issue 2, Pages 147-165

Publisher

SPRINGER
DOI: 10.1007/s11044-008-9132-4

Keywords

Multibody dynamics; System reduction; Quasi-static modal model; Wind turbine

Categories

Funding

  1. Danish Council for Strategic Research

Ask authors/readers for more resources

A system reduction scheme is devised related to a multibody formulation from which the dynamic response of a wind turbine is determined. In this formulation, each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure. The Ritz bases spanning the reduced system comprises of rigid body modes and some dynamic low-frequency elastic eigenmodes compatible to the kinematic constraints of the related substructure. The high-frequency elastic modes are presumed to cause merely quasi-static displacements, and thus are included in the expansion via a quasi-static correction. The results show that by using the derived reduction scheme it is only necessary with 2 dynamical modes for the blade substructure when the remaining modes are treated as quasi-static. Moreover, it is shown that it has little to none effect if the gyroscopic stiffness matrix during a stopped situation or under nominal operational conditions is used to derive the functional basis of the modal expansion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available