4.6 Article

Elastic strain engineering of ferroic oxides

Journal

MRS BULLETIN
Volume 39, Issue 2, Pages 118-130

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2014.1

Keywords

-

Funding

  1. National Science Foundation (NSF) [DMR-0820404, DMR-0948036]
  2. US Department of Energy [DE-AC0205CH11231]

Ask authors/readers for more resources

Using epitaxy and the misfit strain imposed by an underlying substrate, it is possible to elastically strain oxide thin films to percent levels-far beyond where they would crack in bulk. Under such strains, the properties of oxides can be dramatically altered. In this article, we review the use of elastic strain to enhance ferroics, materials containing domains that can be moved through the application of an electric field (ferroelectric), a magnetic field (ferromagnetic), or stress (ferroelastic). We describe examples of transmuting oxides that are neither ferroelectric nor ferromagnetic in their unstrained state into ferroelectrics, ferromagnets, or materials that are both at the same time (multiferroics). Elastic strain can also be used to enhance the properties of known ferroic oxides or to create new tunable microwave dielectrics with performance that rivals that of existing materials. Results show that for thin films of ferroic oxides, elastic strain is a viable alternative to the traditional method of chemical substitution to lower the energy of a desired ground state relative to that of competing ground states to create materials with superior properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available