4.6 Article

Development of electron energy-loss spectroscopy in the biological sciences

Journal

MRS BULLETIN
Volume 37, Issue 1, Pages 53-62

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs.2011.329

Keywords

-

Funding

  1. National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health

Ask authors/readers for more resources

The high sensitivity of electron energy-loss spectroscopy (EELS) for detecting light elements at the nanoscale makes it a valuable technique for application to biological systems. In particular, EELS provides quantitative information about elemental distributions within subcellular compartments, specific atoms bound to individual macromolecular assemblies, and the composition of bionanoparticles. EELS data can be acquired either in the fixed beam energy-filtered transmission electron microscope (EFTEM) or in the scanning transmission electron microscope, and recent progress in the development of both approaches has greatly expanded the range of applications for EELS analysis. Near single atom sensitivity is now achievable for certain elements bound to isolated macromolecules, and it becomes possible to obtain three-dimensional compositional distributions from sectioned cells through EFTEM tomography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available