4.6 Article

Templating Approaches Using Natural Cellular Plant Tissue

Journal

MRS BULLETIN
Volume 35, Issue 2, Pages 145-149

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs2010.635

Keywords

-

Funding

  1. Cluster of Excellence Engineering of Advanced Materials

Ask authors/readers for more resources

Biological preforms such as plant tissue offer a novel approach for manufacturing biomorphous ceramics with an anisotropic cellular micro- and macrostructure pseudomorphous to the natural template structure. Mimicking the hierarchical microstructure of the native template at different length scales from large vessels (mm) down to a cell wall microstructure (mu m to nm) offers the possibility to tailor the local strut microstructure in biomorphous ceramics in order to improve mechanical properties at low density. Mineralization may be achieved by intercalation of the cell walls with an inorganic, metal organic, or organometallic sol. Heating above the pyrolysis temperature of the hydrocarbons forming the cell wall material in an inert atmosphere finally results in a positive replica of the cellular structure with a metal oxide/carbon composite forming the cell walls. Amorphous, nano- or microcrystalline C/Si-O-C(-N) composite materials are obtained by infiltration with a low viscosity preceramic polymeric precursor, such as polycarbosilane, -silazane, -siloxane, or a copolymer or mixture thereof. Pyrolysis into a biocarbon template and subsequent metal alloy melt or vapor infiltration and reaction at high temperatures above 1000 degrees C is an alternate way to produce single and multiphase carbides and composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available