4.6 Article

Materials Science of High-Level Nuclear Waste Immobilization

Journal

MRS BULLETIN
Volume 34, Issue 1, Pages 46-53

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs2009.12

Keywords

-

Funding

  1. Office of Basic Energy Sciences of the U.S. Department of Energy

Ask authors/readers for more resources

With the increasing demand for the development of nuclear power comes the responsibility to address the issue of waste, including the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available