4.6 Article

An Atom-Probe Tomography Primer

Journal

MRS BULLETIN
Volume 34, Issue 10, Pages 717-724

Publisher

MATERIALS RESEARCH SOC
DOI: 10.1557/mrs2009.194

Keywords

-

Funding

  1. National Science Foundation (NSF)
  2. Department of Energy (DOE)
  3. Office of Naval Research (ONR)
  4. Air Force Office of Scientific Research (AFOSR)
  5. Semiconductor Research Corporation
  6. IBM Watson Laboratory
  7. Ford-Boeing-Northwestern Alliance
  8. NSF
  9. Division Of Materials Research
  10. Direct For Mathematical & Physical Scien [0804610] Funding Source: National Science Foundation

Ask authors/readers for more resources

Atom-probe tomography (APT) is in the midst of a dynamic renaissance as a result of the development of well-engineered commercial instruments that are both robust and ergonomic and capable of collecting large data sets, hundreds of millions of atoms, in short time periods compared to their predecessor instruments. An APT setup involves a field-ion microscope coupled directly to a special time-of-flight (TOF) mass spectrometer that permits one to determine the mass-to-charge states of individual field-evaporated ions plus their x-, y-, and z-coordinates in a specimen in direct space with subnanoscale resolution. The three-dimensional (3D) data sets acquired are analyzed using increasingly sophisticated software programs that utilize high-end workstations, which permit one to handle continuously increasing large data sets. APT has the unique ability to dissect a lattice, with subnanometer-scale spatial resolution, using either voltage or laser pulses, on an atom-by-atom and atomic plane-by-plane basis and to reconstruct it in 3D with the chemical identity of each detected atom identified by TOF mass spectrometry. Employing pico- or femtosecond laser pulses using visible (green or blue light) to ultraviolet light makes the analysis of metallic, semiconducting, ceramic, and organic materials practical to different degrees of success. The utilization of dual-beam focused ion-beam microscopy for the preparation of microtip specimens from multilayer and surface films, semiconductor devices, and for producing site-specific specimens greatly extends the capabilities of APT to a wider range of scientific and engineering problems than could previously be studied for a wide range of materials: metals, semiconductors, ceramics, biominerals, and organic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available