4.6 Article Proceedings Paper

Role of Serotonin Neurons in the Induction of Levodopa- and Graft-Induced Dyskinesias in Parkinson's Disease

Journal

MOVEMENT DISORDERS
Volume 25, Issue 3, Pages S174-S179

Publisher

WILEY
DOI: 10.1002/mds.22792

Keywords

dyskinesia; L-dopa; serotonin; 5-HT1A receptor agonist; 5-HT1B receptor agonist; graft-induced dyskinesia

Ask authors/readers for more resources

Recent studies in animal models of Parkinson's disease (PD) have provided evidence that dopamine released from spared serotonin afferents can act as a trigger of dyskinetic movements induced by repetitive, low closes of levodopa. Serotonin neurons have the capacity to store and release dopamine synthesized from systemically administered levodopa. However, because of the lack of any autoregulatory feedback control, dopamine released from serotonin terminals results in excessive swings in extracellular dopamine levels after peripheral administration of levodopa. Such dysregulated release of levodopa-derived dopamine is likely to be responsible for the appearance of the abnormal movements in levodopa-primed animals. This mechanism may also play a role in the development of graft-induced dyskinesias in patients that receive fetal neuron transplants, possibly due to the inclusion of serotonin neurons in the grafted ventral midbrain tissue, which contribute to maintain dopamine receptors of the denervated striatum in a supersensitive state. (C) 2010 Movement Disorder Society

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available