4.4 Article

Sensitivity of Tropical Cyclone Simulations to Parametric Uncertainties in Air-Sea Fluxes and Implications for Parameter Estimation

Journal

MONTHLY WEATHER REVIEW
Volume 142, Issue 6, Pages 2290-2308

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-13-00208.1

Keywords

-

Funding

  1. National Science Foundation (NSF) [DGE-0750756, DGE-1255832]
  2. ONR [N000140910526]
  3. NSF [ATM-0840651]
  4. NOAA (HFIP)
  5. Graduate Visitor Program at the National Center for Atmospheric Research (NCAR)
  6. NSF
  7. Texas Advanced Computing Center (TACC) at the University of Texas at Austin

Ask authors/readers for more resources

Tropical cyclones (TCs) are strongly influenced by fluxes of momentum and moist enthalpy across the air-sea interface. These fluxes cannot be resolved explicitly by current-generation numerical weather prediction models, and therefore must be accounted for via empirical parameterizations of surface exchange coefficients (C-D for momentum and C-k for moist enthalpy). The resultant model uncertainty is examined through hundreds of convection-permitting Weather Research and Forecasting Model (WRF) simulations of Hurricane Katrina (2005) by varying four key parameters found in commonly used parameterizations of the exchange coefficient formulas. Two of these parameters effectively act as multiplicative factors for the exchange coefficients over all wind speeds (one each for C-D and C-k); the other two parameters control the behavior of C-D at very high wind speeds (i.e., above 33 m s(-1)). It is found that both the intensity and the structure of TCs are highly dependent upon the two multiplicative parameters. The multiplicative parameter for C-D has a considerably larger impact than the one for C-k on the relationship between maximum 10-m wind speed and minimum sea level pressure: C-D alters TC structure, with higher values shifting the radius of maximum winds inward and strengthening the low-level inflow; C-k only affects structure by uniformly strengthening/weakening the primary and secondary circulations. The TC exhibits the greatest sensitivities to the two multiplicative parameters after a few hours of model integration, suggesting that these parameters could be estimated by assimilating near-surface observations. The other two parameters are likely more difficult to estimate because the TC is only marginally sensitive to them in small areas of high wind speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available