4.4 Article

Extreme Helicity and Intense Convective Towers in Hurricane Bonnie

Journal

MONTHLY WEATHER REVIEW
Volume 136, Issue 11, Pages 4355-4372

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008MWR2423.1

Keywords

-

Ask authors/readers for more resources

Helicity was calculated in Hurricane Bonnie (1998) using tropospheric-deep dropsonde soundings from the NASA Convection and Moisture Experiment. Large helicity existed downshear of the storm center with respect to the ambient vertical wind shear. It was associated with veering, semicircular hodographs created by strong, vortex-scale, radial-vertical flow induced by the shear. The most extreme values of helicity, among the largest ever reported in the literature, occurred in the vicinity of deep convective cells in the downshear-left quadrant. These cells reached as high as 17.5 km and displayed the temporal and spatial scales of supercells. Convective available potential energy (CAPE) averaged 861 J kg(-1) downshear, but only about one-third as large upshear. The soundings nearest the deep cells were evaluated using two empirical supercell parameters that make use of CAPE, helicity, and/or shear. These parameters supported the possible existence of supercells as a consequence of the exceptional helicity combined with moderate but sufficient CAPE. Ambient vertical wind shear exceeded 12 m s(-1) for 30 h, yet the hurricane maintained 50 m s(-1) maximum winds. It is hypothesized that the long-lived convective cells enabled the storm to resist the negative impact of the shear. Supercells in large-helicity, curved-hodograph environments appear to provide a useful conceptual model for intense convection in the hurricane core. Helicity calculations might also give some insight into the behavior of vortical hot towers, which share some characteristics with supercells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available