4.7 Article

First results from the IllustrisTNG simulations: radio haloes and magnetic fields

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 480, Issue 4, Pages 5113-5139

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/sty2206

Keywords

magnetic fields; MHD; methods: numerical; galaxies: clusters: general; cosmology: theory; radio continuum: general

Funding

  1. European Research Council under the ERC-StG [EXAGAL-308037]
  2. MIT RSC award
  3. Alfred P. Sloan Foundation
  4. NASA ATP grant [NNX17AG29G]
  5. NASA through Hubble Fellowship [HST-HF2-51341.001-A, HST-HF2-51384.001-A]
  6. NSF AARF award [AST-1402480]
  7. Simons Foundation
  8. FAS
  9. MKI
  10. NASA [NAS5-26555]

Ask authors/readers for more resources

We introduce the IllustrisTNG project, a new suite of cosmological magnetohydrodynamical simulations performed with the moving-mesh code AREPO employing an updated Illustris galaxy formation model. Here we focus on the general properties of magnetic fields and the diffuse radio emission in galaxy clusters. Magnetic fields are prevalent in galaxies, and their build-up is closely linked to structure formation. We find that structure formation amplifies the initial seed fields (10(-14) comoving Gauss) to the values observed in low-redshift galaxies (1-10 mu G). The magnetic field topology is closely connected to galaxy morphology such that irregular fields are hosted by early-type galaxies, while large-scale, ordered fields are present in disc galaxies. Using two simple models for the energy distribution of relativistic electrons we predict the diffuse radio emission of 280 clusters with a baryonic mass resolution of 1.1 x 10(7) M-circle dot, and generate mock observations for Very Large Array (VLA), Low-Frequency Array (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP), and Square Kilometre Array (SKA). Our simulated clusters show extended radio emission, whose detectability correlates with their virial mass. We reproduce the observed scaling relations between total radio power and X-ray emission, M500, and the Sunyaev-Zel'dovich Y500 parameter. The radio emission surface brightness profiles of our most massive clusters are in reasonable agreement with VI.A measurements of Coma and Perseus. Finally, we discuss the fraction of detected extended radio haloes as a function of virial mass and source count functions for different instruments. Overall our results agree encouragingly well with observations, but a refined analysis requires a more sophisticated treatment of relativistic particles in large-scale galaxy formation simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available