4.7 Article

The decomposed bulge and disc size mass relations of massive galaxies at 1<z<3 in CANDELS

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 444, Issue 2, Pages 1660-1673

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu1537

Keywords

galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: high-redshift; galaxies: spiral; galaxies: structure

Funding

  1. Science and Technology Facilities Council (STFC)
  2. EC FP7 Space project ASTRODEEP [312725]
  3. European Research Council
  4. Royal Society
  5. Leverhulme Trust
  6. NASA [GO-12060, 1407, NAS5-26555]
  7. NSF [AST-08-08133]
  8. Science and Technology Facilities Council [ST/J001422/1, ST/L000695/1] Funding Source: researchfish
  9. Direct For Mathematical & Physical Scien [0808133] Funding Source: National Science Foundation
  10. Division Of Astronomical Sciences [0808133] Funding Source: National Science Foundation
  11. STFC [ST/L000695/1, ST/I001212/1, ST/J001422/1] Funding Source: UKRI

Ask authors/readers for more resources

We have constructed a mass-selected sample of M-* > 10(11) Me galaxies at 1 < z < 3 in the CANDELS UKIDSS UDS and COSMOS fields and have decomposed these systems into their separate bulge and disc components according to their H-160-band morphologies. By extending this analysis to multiple bands, we have been able to conduct individual bulge and disc component SED fitting which has provided us with stellar-mass and star formation rate estimates for the separate bulge and disc components. Having utilized the new decomposed stellar-mass estimates, we confirm that the bulge components display a stronger size evolution than the discs. The median sizes of the bulge components is 3.09 +/- 0.20 times smaller than similarly massive local galaxies over the full 1 < z < 3 redshift range; for the discs, the corresponding factor is 1.77 +/- 0.10. Moreover, by splitting our sample into the passive and star-forming bulge and disc sub-populations and examining their sizes as a fraction of their present-day counter-parts, we find that the star-forming and passive bulges are equally compact, star-forming discs are larger, while the passive discs have intermediate sizes. This trend is not evident when classifying galaxy morphology on the basis of single-Sersic fits and adopting the overall star formation rates. Finally, by evolving the star formation histories of the passive discs back to the redshifts when the passive discs were last active, we show that the passive and star-forming discs have consistent sizes at the relevant epoch. These trends need to be reproduced by any mechanisms which attempt to explain the morphological evolution of galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available