4.7 Article

Herschel-ATLAS*: far-infrared properties of radio-loud and radio-quiet quasars

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 442, Issue 2, Pages 1181-1196

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu782

Keywords

quasars: general; infrared: galaxies

Funding

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. U.S. Department of Energy
  4. National Aeronautics and Space Administration
  5. Japanese Monbukagakusho
  6. Max Planck Society
  7. Higher Education Funding Council for England
  8. STFC [ST/H001530/1, ST/J001333/1] Funding Source: UKRI
  9. Science and Technology Facilities Council [ST/J001333/1] Funding Source: researchfish

Ask authors/readers for more resources

We have constructed a sample of radio-loud and radio-quiet quasars from the Faint Images Radio Sky at Twenty-one centimetres and the Sloan Digital Sky Survey Data Release 7, over the Herschel-ATLAS Phase 1 area (9(h), 12(h), and 14th.5). Using a stacking analysis, we find a significant correlation between the far-infrared (FIR) luminosity and 1.4-GHz luminosity for radio-loud quasars. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution, while for radio-quiet quasars, no partial correlation is found. Using a single-temperature grey-body model, we find a general trend of lower dust temperatures in case of radio-loud quasars compared to radio-quiet quasars. Also, radio-loud quasars are found to have almost constant mean values of dust mass along redshift and optical luminosity bins. In addition, we find that radio-loud quasars at lower optical luminosities tend to have on average higher FIR and 250-mu m luminosity with respect to radio-quiet quasars with the same optical luminosites. Even if we use a two-temperature grey-body model to describe the FIR data, the FIR luminosity excess remains at lower optical luminosities. These results suggest that powerful radio jets are associated with star formation especially at lower accretion rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available