4.7 Article

The bifurcated age-metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 436, Issue 1, Pages 122-135

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt1540

Keywords

Galaxy: formation; globular clusters: general; galaxies: dwarf

Funding

  1. DAGAL network from the People Programme (Marie Curie Actions) of the European Union under REA grant [PITN-GA-2011-289313]
  2. Natural Sciences and Research Council of Canada

Ask authors/readers for more resources

We use recently derived ages for 61 Milky Way (MW) globular clusters (GCs) to show that their age-metallicity relation (AMR) can be divided into two distinct, parallel sequences at [Fe/H] greater than or similar to -1.8. Approximately one-third of the clusters form an offset sequence that spans the full range in age (similar to 10.5-13 Gyr), but is more metal rich at a given age by similar to 0.6 dex in [ Fe/H]. All but one of the clusters in the offset sequence show orbital properties that are consistent with membership in the MW disc. They are not simply the most metal-rich GCs, which have long been known to have disc-like kinematics, but they are the most metal-rich clusters at all ages. The slope of the mass-metallicity relation (MMR) for galaxies implies that the offset in metallicity of the two branches of the AMR corresponds to a mass decrement of 2 dex, suggesting host galaxy masses of M-* similar to 10(7)-10(8) M-circle dot for GCs that belong to the more metal poor AMR. We suggest that the metal-rich branch of the AMR consists of clusters that formed in situ in the disc, while the metal-poor GCs were formed in relatively low-mass (dwarf) galaxies and later accreted by the MW. The observed AMR of MW disc stars, and of the Large Magellanic Cloud, Small Magellanic Cloud and WLM dwarf galaxies, is shown to be consistent with this interpretation, and the relative distribution of implied progenitor masses for the halo GC clusters is in excellent agreement with the MW subhalo mass function predicted by simulations. A notable implication of the bifurcated AMR is that the identical mean ages and spread in ages, for the metal-rich and metal-poor GCs, are difficult to reconcile with an in situ formation for the latter population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available