4.7 Article

Efficient satellite quenching at z ∼ 1 from the GEEC2 spectroscopic survey of galaxy groups

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 431, Issue 2, Pages 1090-1106

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt251

Keywords

galaxies: evolution; galaxies: general; galaxies: luminosity function, mass function

Funding

  1. NSERC
  2. Grants-in-Aid for Scientific Research [23740144] Funding Source: KAKEN
  3. Science and Technology Facilities Council [ST/I001166/1, ST/H008519/1, ST/I00162X/1, ST/F002289/1] Funding Source: researchfish
  4. STFC [ST/F002289/1, ST/I001166/1, ST/I00162X/1, ST/H008519/1] Funding Source: UKRI

Ask authors/readers for more resources

We present deep Gemini Multi-Object Spectrograph-South spectroscopy for 11 galaxy groups at 0.8 < z < 1.0, for galaxies with r(AB) < 24.75. Our sample is highly complete (> 66 per cent) for eight of the 11 groups. Using an optical-near-infrared colour-colour diagram, the galaxies in the sample were separated with a dust insensitive method into three categories: passive (red), star-forming (blue) and intermediate (green). The strongest environmental dependence is observed in the fraction of passive galaxies, which make up only similar to 20 per cent of the field in the mass range 10(10.3) < M-star/M-circle dot < 10(11.0), but are the dominant component of groups. If we assume that the properties of the field are similar to those of the 'pre-accreted' population, the environment quenching efficiency (is an element of(rho)) is defined as the fraction of field galaxies required to be quenched in order to match the observed red fraction inside groups. The efficiency obtained is similar to 0.4, similar to its value in intermediate-density environments locally. While green (intermediate) galaxies represent similar to 20 per cent of the star-forming population in both the group and field, at all stellar masses, the average specific star formation rate of the group population is lower by a factor of similar to 3. The green population does not show strong H delta absorption that is characteristic of starburst galaxies. Finally, the high fraction of passive galaxies in groups, when combined with satellite accretion models, require that most accreted galaxies have been affected by their environment. Thus, any delay between accretion and the onset of truncation of star formation (tau) must be <= 2 Gyr, shorter than the 3-7 Gyr required to fit data at z = 0. The relatively small fraction of intermediate galaxies require that the actual quenching process occurs quickly, with an exponential decay time-scale of tau(q) <= 1Gyr.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available