4.7 Article

A new way of setting the phases for cosmological multiscale Gaussian initial conditions

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 434, Issue 3, Pages 2094-2120

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stt1154

Keywords

methods: numerical; cosmology: theory

Funding

  1. STFC [ST/F002289/1]
  2. Large Facilities Capital Fund of BIS
  3. Durham University
  4. STFC [ST/I00162X/1, ST/I001166/1, ST/F002289/1] Funding Source: UKRI
  5. Science and Technology Facilities Council [ST/I001166/1, ST/F002289/1, ST/I00162X/1] Funding Source: researchfish

Ask authors/readers for more resources

We describe how to define an extremely large discrete realization of a Gaussian white noise field that has a hierarchical structure and the property that the value of any part of the field can be computed quickly. Tiny subregions of such a field can be used to set the phase information for Gaussian initial conditions for individual cosmological simulations of structure formation. This approach has several attractive features: (i) the hierarchical structure based on an octree is particularly well suited for generating follow-up resimulation or zoom initial conditions; (ii) the phases are defined for all relevant physical scales in advance so that resimulation initial conditions are, by construction, consistent both with their parent simulation and with each other; (iii) the field can easily be made public by releasing a code to compute it - once public, phase information can be shared or published by specifying a spatial location within the realization. In this paper, we describe the principles behind creating such realizations. We define an example called Panphasia and in a companion paper by Jenkins and Booth (2013) make public a code to compute it. With 50 octree levels Panphasia spans a factor of more than 10(15) in linear scale - a range that significantly exceeds the ratio of the current Hubble radius to the putative cold dark matter free-streaming scale. We show how to modify a code used for making cosmological and resimulation initial conditions so that it can take the phase information from Panphasia and, using this code, we demonstrate that it is possible to make good quality resimulation initial conditions. We define a convention for publishing phase information from Panphasia and publish the initial phases for several of the Virgo Consortium's most recent cosmological simulations including the 303 billion particle MXXL simulation. Finally, for reference, we give the locations and properties of several dark matter haloes that can be resimulated within these volumes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available